Sains Malaysiana 54(7)(2025): 1835-1846
http://doi.org/10.17576/jsm-2025-5407-16
Integrating Microfluidics and 3D Bioprinting for Advanced in vitro Tissue and Organ Models
(Mengintegrasikan Mikrobendalir dan Pencetakan Bio 3D untuk Tisu in
vitro dan Model Organ Termaju)
WEI FU1,
SHAHARIAR CHOWDHURY2, SIEW XIAN CHIN3 & ZHENYA YUAN4,*
1Faculty of Bioscience and Bioengineering, Jiangxi Agricultural
University, Nanchang, China
2Faculty of Environmental Management, Prince of Songkla University,
90110 Hatyai Songkhla, Thailand
3ASASIpintar Program, Pusat GENIUS@Pintar Negara,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
4Pathology Department, The First Affiliated Hospital of Hainan
Medical University, Haikou, China
Diserahkan: 17 April 2025/Diterima:
22 Mei 2025
Abstract
Advances in tissue engineering
necessitate in vitro models that accurately replicate human organ
complexity. The limitations of conventional 2D cultures and animal models have
driven development of biomimetic platforms integrating microfluidics and 3D
bioprinting. Microfluidic technologies enable precise control of fluid
dynamics, nutrient delivery, and biochemical gradients at microscale, while 3D
bioprinting facilitates layer-by-layer fabrication of complex tissue
structures. This review examines design principles of microfluidic platforms,
highlighting organ-on-a-chip and tumor-on-a-chip applications demonstrating
controlled perfusion advantages. We analyze major bioprinting modalities,
extrusion, inkjet, laser-assisted, and stereolithography, evaluating their
suitability for specific tissue engineering applications. The review describes
integration strategies, including direct cell bioprinting into microfluidic
channels and using microfluidic molds for bioprinted constructs, which enhance
vascularization and perfusion. We explore bioink advancements focusing on
printability, mechanical properties, and stimulus-responsiveness (4D
bioprinting). Finally, we address critical research directions: resolution
enhancement, hierarchical vascular network development, AI-driven optimization,
and regulatory standardization to facilitate clinical translation. This
synthesis of current achievements and future directions aims to guide
development of sophisticated in vitro models for disease modeling, drug
discovery, and personalized medicine.
Keywords: Biomimetic models; microfluidics;
organ-on-a-chip; tissue engineering; 3D bioprinting
Abstrak
Kemajuan dalam kejuruteraan tisu
memerlukan model in vitro yang mereplikasi kerumitan organ manusia
dengan tepat. Keterbatasan kultur 2D konvensional dan model haiwan telah
mendorong pembangunan platform biomimetik yang menyepadukan mikrobendalir dan
pencetakan bio 3D. Teknologi mikrobendalir membolehkan kawalan tepat ke atas
dinamik bendalir, penghantaran nutrien dan kecerunan biokimia pada skala mikro,
manakala pencetakan bio 3D memudahkan fabrikasi lapisan demi lapisan bagi
struktur tisu kompleks. Penyelidikan ini mengkaji prinsip reka bentuk platform mikrobendalir,
menyerlahkan aplikasi organ-on-a-chip dan tumor-on-a-chip yang
menunjukkan kelebihan perfusi terkawal. Kami menganalisis modaliti pencetakan
bio utama, penyemperitan, pancutan dakwat, bantuan laser dan stereolitografi,
menilai kesesuaiannya untuk aplikasi kejuruteraan tisu tertentu. Penyelidikan ini
menerangkan strategi penyepaduan, termasuk pencetakan bio sel terus ke dalam
saluran mikrobendalir dan menggunakan acuan mikrobendalir untuk binaan biocetak
yang meningkatkan vaskularisasi dan perfusi. Kami meneroka kemajuan dakwat bio
yang memfokuskan pada kebolehcetakan, sifat mekanikal dan tindak balas
rangsangan (percetakan bio 4D). Akhir sekali, kami menangani arah penyelidikan
kritikal: peningkatan resolusi, pembangunan rangkaian vaskular hierarki,
pengoptimuman dipacu AI dan penyeragaman kawal selia untuk memudahkan
terjemahan klinikal. Sintesis pencapaian semasa dan hala tuju masa hadapan ini
bertujuan untuk membimbing pembangunan model in vitro yang canggih untuk
pemodelan penyakit, penemuan ubat dan perubatan yang diperibadikan.
Kata kunci: Kejuruteraan tisu; mikrobendalir;
model biomimetik; organ-on-a-chip; pencetakan bio 3D
RUJUKAN
Baptista, L.S., Porrini, C., Kronemberger, G.S.,
Kelly, D.J. & Perrault, C.M. 2022. 3D Organ-on-A-chip: The convergence of
microphysiological systems and organoids. Frontiers in Cell and
Developmental Biology 10: 1043117. https://doi.org/10.3389/fcell.2022.1043117
Cao, U.M.N., Zhang, Y., Chen, J., Sayson, D., Pillai,
S. & Tran, S.D. 2023. Microfluidic Organ-on-A-chip: A guide to biomaterial
choice and fabrication. International Journal of Molecular Sciences 24(4):
3232. https://doi.org/10.3390/ijms24043232
Cardoso, B.D.,
Castanheira, E.M.S., Lanceros-Méndez, S. & Cardoso, V.F. 2023. Recent advances
on cell culture platforms for in vitro drug screening and cell therapies:
From conventional to microfluidic strategies. Advanced Healthcare Materials 12(18): e202202936. https://doi.org/10.1002/adhm.202202936
Casanova, C.R.,
Casanova, M.R., Reis, R.L. & Oliveira, J.M. 2024. Advancing diagnostics and disease
modeling: Current concepts in biofabrication of soft microfluidic systems. In Vitro Models 3(2-3): 139-150.
https://doi.org/10.1007/s44164-024-00072-5
Chliara, M.A.,
Elezoglou, S. & Zergioti, I. 2022.
Bioprinting on Organ-on-Chip: Development and applications. Biosensors 12(12): 1135. https://doi.org/10.3390/bios12121135
Christou, C.D.,
Vasileiadou, S., Sotiroudis, G. & Tsoulfas, G. 2023. Three-dimensional printing and
bioprinting in renal transplantation and regenerative medicine: Current perspectives. Journal of Clinical Medicine 12(20): 6520.
https://doi.org/10.3390/jcm12206520
Corbett, D.C., Olszewski, E. & Stevens, K. 2019.
A FRESH take on resolution in 3D bioprinting. Trends in Biotechnology 37(11):
1153-1155. https://doi.org/https://doi.org/10.1016/j.tibtech.2019.09.003
Costantini, M., Testa, S.,
Mozetic, P., Barbetta, A., Fuoco, C., Fornetti, E., Tamiro, F., Bernardini, S.,
Jaroszewicz, J., Święszkowski, W., Trombetta, M., Castagnoli, L.,
Seliktar, D., Garstecki, P., Cesareni, G., Cannata, S., Rainer, A. &
Gargioli, C. 2017. Microfluidic-enhanced
3D bioprinting of aligned myoblast-laden hydrogels leads to functionally
organized myofibers in vitro and in vivo. Biomaterials 131: 98-110. https://doi.org/10.1016/j.biomaterials.2017.03.026
Davoodi, E., Sarikhani, E., Montazerian, H., Ahadian, S.,
Costantini, M., Swieszkowski, W., Willerth, S., Walus, K., Mofidfar, M.,
Toyserkani, E., Khademhosseini, A. & Ashammakhi, N. 2020. Extrusion
and microfluidic-based bioprinting to fabricate biomimetic tissues and organs. Advanced
Materials Technologies5(8): 1901044. https://doi.org/10.1002/admt.201901044
Deosarkar, S.P., Prabhakarpandian, B., Wang, B.,
Sheffield, J.B., Krynska, B. & Kiani, M.F. 2015. A novel dynamic neonatal
blood-brain barrier on a chip. PLoS ONE 10(11): e0142725.
https://doi.org/10.1371/journal.pone.0142725
De Spirito, M.,
Palmieri, V., Perini, G. & Papi, M. 2024. Bridging the gap: Integrating 3D bioprinting
and microfluidics for advanced multi-organ models in biomedical research. Bioengineering 11(7): 664. https://doi.org/10.3390/bioengineering11070664
Ewart, L., Apostolou, A., Briggs, S.A., Carman,
C.V., Chaff, J.T., Heng, A.R., Jadalannagari, S., Janardhanan, J., Jang, K-J., Joshipura, S.R., Kadam, M.M., Kanellias, M., Kujala, V.J., Kulkarni, G., Le, C.Y., Lucchesi, C., Manatakis, D.V., Maniar, K.K., Quinn, M.E., Ravan, J.S., Rizos, A.C., Sauld, J.F.K., Sliz, J.D., Tien-Street, W., Trinidad, D.R., Velez, J., Wendell, M., Irrechukwu, O., Mahalingaiah, P.K., Ingber, D.E., Scannell, J.W.
& Levner, D. 2022. Performance assessment and economic
analysis of a human liver-chip for predictive toxicology. Communications
Medicine 2: 154. https://doi.org/10.1038/s43856-022-00209-1
Fang, L., Liu, Y., Qiu, J. & Wan, W. 2022.
Bioprinting and its use in tumor-on-a-chip technology for cancer drug screening:
A review. International Journal of Bioprinting 8(4): 46-64.
https://doi.org/10.18063/ijb.v8i4.603
Fratini, C., Weaver, E., Moroni, S., Irwin, R.,
Dallal Bashi, Y.H., Uddin, S., Casettari, L., Wylie, M.P. & Lamprou, D.A. 2023.
Combining microfluidics and coaxial 3D-bioprinting for the manufacturing of
diabetic wound healing dressings. Biomaterials Advances 153: 213557.
https://doi.org/10.1016/j.bioadv.2023.213557
Garg, S., Heuck, G., Ip, S. & Ramsay, E. 2016.
Microfluidics: A transformational tool for nanomedicine development and
production. Journal of Drug Targeting 24(9): 821-835.
https://doi.org/10.1080/1061186X.2016.1198354
Gu, B., Han, K., Cao, H., Huang, X., Li, X., Mao,
M., Zhu, H., Cai, H., Li, D. & He, J. 2024. Heart-on-a-chip systems with
tissue-specific functionalities for physiological, pathological, and
pharmacological studies. Materials Today Bio 24: 100914.
https://doi.org/https://doi.org/10.1016/j.mtbio.2023.100914
Herland, A., van der Meer, A.D., FitzGerald, E.A.,
Park, T-E., Sleeboom, J.J.F. & Ingber, D.E. 2016. Distinct contributions of
astrocytes and pericytes to neuroinflammation identified in a 3D human
blood-brain barrier on a chip. PLoS ONE 11(3): e0150360.
https://doi.org/10.1371/journal.pone.0150360
Hinton, T.J., Jallerat, Q., Palchesko, R.N., Park,
J.H., Grodzicki, M.S., Shue, H-J., Ramadan, M.H., Hudson, A.R. & Feinberg, A.W.
2025. Three-dimensional printing of complex biological structures by freeform
reversible embedding of suspended hydrogels. Science Advances 1(9):
e1500758. https://doi.org/10.1126/sciadv.1500758
Huang, C., Sanaei, F., Verdurmen, W.P.R., Yang,
F., Ji, W. & Walboomers, X.F. 2023. The application of organs-on-a-chip in
dental, oral, and craniofacial research. Journal of Dental Research 102(4):
364-375. https://doi.org/10.1177/00220345221145555
Ionov, L. 2018. 4D biofabrication: Materials, methods,
and applications. Advanced Healthcare Materials 7(17): 1800412.
https://doi.org/https://doi.org/10.1002/adhm.201800412
Jeon, E.Y., Sorrells, L. & Abaci, H.E. 2022.
Biomaterials and bioengineering to guide tissue morphogenesis in epithelial
organoids. Frontiers in Bioengineering and Biotechnology 10: 1038277.
https://doi.org/10.3389/fbioe.2022.1038277
Jia, S., Bu, Y., Lau, D-S.A., Lin, Z., Sun, T.,
Lu, W.W., Lu, S., Ruan, C. & Chan, C-H.J. 2023. Advances in 3D bioprinting
technology for functional corneal reconstruction and regeneration. Frontiers
in Bioengineering and Biotechnology 10: 1065460.
https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2022.1065460
Kahraman, E., Ribeiro, R.,
Lamghari, M. & Neto, E. 2022. Cutting-edge technologies for inflamed joints
on chip: How close are we? Frontiers in Immunology 13: 802440. https://doi.org/10.3389/fimmu.2022.802440
Kang, H-W., Lee, S.J., Ko, I.K., Kengla, C., Yoo,
J.J. & Atala, A. 2016. A 3D bioprinting system to produce human-scale
tissue constructs with structural integrity. Nature Biotechnology 34(3):
312-319. https://doi.org/10.1038/nbt.3413
Kim, B.S., Lee, J-S., Gao, G. & Cho, D-W. 2017.
Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 9(2): 025034. https://doi.org/10.1088/1758-5090/aa71c8
Kim, M., Panagiotakopoulou, M., Chen, C., Ruiz,
S.B., Ganesh, K., Tammela, T. & Heller, D.A. 2023. Micro-engineering and
nano-engineering approaches to investigate tumour ecosystems. Nature Reviews
Cancer 23: 581-599. https://doi.org/10.1038/s41568-023-00593-3
Kim, S., Chung, M., Ahn, J., Lee, S. & Jeon,
N.L. 2016. Interstitial flow regulates the angiogenic response and phenotype of
endothelial cells in a 3D culture model. Lab Chip 16(21): 4189-4199.
https://doi.org/10.1039/C6LC00910G
Kim, Y.B., Lee, H. & Kim, G.H. 2016.
Strategy to achieve highly porous/biocompatible macroscale cell blocks, using a
collagen/genipin-bioink and an optimal 3D printing process. ACS Applied
Materials & Interfaces 8(47): 32230-32240.
https://doi.org/10.1021/acsami.6b11669
Kirillova, A. &
Ionov, L. 2019.
Shape-changing polymers for biomedical applications. Journal of Materials
Chemistry B 7(10): 1597-1624. https://doi.org/10.1039/C8TB02579G
Klangprapan, J., Souza,
G.R. & Ferreira, J.N. 2024.
Bioprinting salivary gland models and their regenerative applications. BDJ
Open 10: 39. https://doi.org/10.1038/s41405-024-00219-2
Klotz, B.J., Gawlitta, D., Rosenberg, A.J.W.P.,
Malda, J. & Melchels, F.P.W. 2016. Gelatin-methacryloyl hydrogels: Towards biofabrication-based
tissue repair. Trends in Biotechnology 34(5): 394-407.
https://doi.org/https://doi.org/10.1016/j.tibtech.2016.01.002
Kolesky, D.B., Homan, K.A., Skylar-Scott, M.A. &
Lewis, J.A. 2016. Three-dimensional bioprinting of thick vascularized tissues. Proceedings
of the National Academy of Sciences 113(12): 3179-3184.
https://doi.org/10.1073/pnas.1521342113
Lam, E.H.Y., Yu, F., Zhu, S. & Wang, Z. 2023.
3D bioprinting for next-generation personalized medicine. International
Journal of Molecular Sciences 24(7): 6357. https://doi.org/10.3390/ijms24076357
Li, H., Li, N., Zhang, H., Zhang, Y., Suo, H., Wang,
L. & Xu, M. 2020. Three-dimensional bioprinting of perfusable hierarchical
microchannels with alginate and silk fibroin double cross-linked network. 3D
Printing and Additive Manufacturing 7(2): 78-84.
https://doi.org/10.1089/3dp.2019.0115
Lim, K.S., Levato, R., Costa,
P.F., Castilho, M.D., Alcala-Orozco, C.R., van Dorenmalen, K.M.A., Melchels, F.P.W.,
Gawlitta, D., Hooper, G.J., Malda, J. & Woodfield, T.B.F. 2018. Bio-resin for
high resolution lithography-based biofabrication of complex cell-laden
constructs. Biofabrication 10(3): 034101.
https://doi.org/10.1088/1758-5090/aac00c
Lin, H., Zhang, D., Alexander, P.G., Yang, G., Tan,
J., Cheng, A.W-M. & Tuan, R.S. 2013. Application of visible light-based
projection stereolithography for live cell-scaffold fabrication with designed
architecture. Biomaterials 34(2): 331-339. https://doi.org/10.1016/j.biomaterials.2012.09.048
Liu, T., Weng, W., Zhang, Y., Sun, X. & Yang,
H. 2020. Applications of gelatin methacryloyl (GelMA) hydrogels in microfluidic
technique-assisted tissue engineering. Molecules 25(22): 5305.
https://doi.org/10.3390/molecules25225305
Ma, J., Wang, Y. & Liu, J. 2018.
Bioprinting of 3D tissues/organs combined with microfluidics. RSC Advances 8(39): 21712-21727. https://doi.org/10.1039/c8ra03022g
Makkar, H., Zhou, Y., Tan, K.S., Lim, C.T. &
Sriram, G. 2023. Modeling crevicular fluid flow and host-oral microbiome
interactions in a gingival crevice-on-chip. Advanced Healthcare Materials 12(6): 2202376. https://doi.org/https://doi.org/10.1002/adhm.202202376
Marcotulli, M., Tirelli, M.C., Volpi, M., Jaroszewicz,
J., Scognamiglio, C., Kasprzycki, P., Karnowski, K., Święszkowski, W., Ruocco, G., Costantini, M., Cidonio, G. & Barbetta, A. 2023.
Microfluidic 3D printing of emulsion ink for engineering porous functionally
graded materials. Advanced Materials Technologies 8(5): 2201244.
https://doi.org/https://doi.org/10.1002/admt.202201244
McDonald, J.C. & Whitesides, G.M. 2002.
Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts
of Chemical Research 35(7): 491-499. https://doi.org/10.1021/ar010110q
Melchels, F.P.W., Feijen, J. & Grijpma, D.W.
2010. A review on stereolithography and its applications in biomedical
engineering. Biomaterials 31(24): 6121-6130.
https://doi.org/https://doi.org/10.1016/j.biomaterials.2010.04.050
Miao, S., Castro, N., Nowicki, M., Xia, L., Cui,
H., Zhou, X., Zhu, W., Lee, S-J., Sarkar, K., Vozzi, G., Tabata, Y., Fisher, J.
& Zhang, L.G. 2017. 4D printing of polymeric materials for tissue and organ
regeneration. Materials Today 20(10): 577-591.
https://doi.org/https://doi.org/10.1016/j.mattod.2017.06.005
Michas, C., Karakan, M.Ç., Nautiyal, P., Seidman,
J.G., Seidman, C.E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A.E. &
Chen, C.S. 2025. Engineering a living cardiac pump on a chip using
high-precision fabrication. Science Advances 8(16): eabm3791.
https://doi.org/10.1126/sciadv.abm3791
Miri, A.K., Mostafavi, E., Khorsandi, D., Hu, S-K.,
Malpica, M. & Khademhosseini, A. 2019. Bioprinters for organs-on-chips. Biofabrication 11(4): 042002. https://doi.org/10.1088/1758-5090/ab2798
Moetazedian, A., Candeo, A., Liu, S., Hughes, A.,
Nasrollahi, V., Saadat, M., Bassi, A., Grover, L.M., Cox, L.R. &
Poologasundarampillai, G. 2023. Versatile microfluidics for biofabrication
platforms enabled by an agile and inexpensive fabrication pipeline. Advanced
Healthcare Materials 12(26): 2300636.
https://doi.org/10.1002/adhm.202300636
Moghimi, N., Ali Hosseini, S., Dalan, A.B., Mohammadrezaei,
D., Goldman, A. & Kohandel, M. 2023. Controlled tumor heterogeneity in a
co-culture system by 3D bio-printed tumor-on-chip model. Scientific Reports 13: 13648. https://doi.org/10.1038/s41598-023-40680-x
Monzón, M.D., Ortega, Z.,
Martínez, A. & Ortega, F. 2015.
Standardization in additive manufacturing: Activities carried out by
international organizations and projects. The International Journal of
Advanced Manufacturing Technology 76(5): 1111-1121.
https://doi.org/10.1007/s00170-014-6334-1
Muniraj, G., Tan, R.H.S., Dai, Y., Wu, R., Alberti,
M. & Sriram, G. 2023. Microphysiological modeling of gingival tissues and
host-material interactions using gingiva-on-chip. Advanced Healthcare
Materials 12(32): 2301472. https://doi.org/10.1002/adhm.202301472
Murphy, S.V. & Atala, A. 2014. 3D
bioprinting of tissues and organs. Nature Biotechnology 32(8): 773-785.
https://doi.org/10.1038/nbt.2958
Ozbolat, I.T. & Hospodiuk, M. 2016. Current
advances and future perspectives in extrusion-based bioprinting. Biomaterials 76: 321-343. https://doi.org/10.1016/j.biomaterials.2015.10.076
Park, T.E., Mustafaoglu, N., Herland, A., Hasselkus,
R., Mannix, R., FitzGerald, E.A., Prantil-Baun, R., Watters, A., Henry, O., Benz, M., Sanchez, H., McCrea, H.J., Goumnerova, L.C., Song, H.W., Palecek, S.P., Shusta, E. & Ingber, D.E. 2019.
Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function
and shuttling of drugs and antibodies. Nature Communications 10(1): 2621. https://doi.org/10.1038/s41467-019-10588-0
Peired, A.J.,
Mazzinghi, B., De Chiara, L., Guzzi, F., Lasagni, L., Romagnani, P. &
Lazzeri, E. 2020.
Bioengineering strategies for nephrologists: Kidney was not built in a day. Expert
Opinion on Biological Therapy 20(5): 467-480.
https://doi.org/10.1080/14712598.2020.1709439
Petrosyan, A., Cravedi, P., Villani, V., Angeletti,
A., Manrique, J., Renieri, A., De Filippo, R.E., Perin, L. & Da Sacco, S. 2019.
A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nature Communications 10(1): 3656.
https://doi.org/10.1038/s41467-019-11577-z
Pi, Q., Maharjan, S., Yan, X., Liu, X., Singh, B.,
van Genderen, A.M., Robledo-Padilla, F., Parra-Saldivar, R., Hu, N., Jia, W.,
Xu, C., Kang, J., Hassan, S., Cheng, H., Hou, X., Khademhosseini, A. &
Zhang, Y.S. 2018. Digitally tunable microfluidic bioprinting of multilayered
cannular tissues. Advanced Materials 30(43): 1706913.
https://doi.org/10.1002/adma.201706913
Rose, S.C., Larsen, M., Xie, Y. &
Sharfstein, S.T. 2024. Salivary gland bioengineering. Bioengineering (Basel) 11(1): 28. https://doi.org/10.3390/bioengineering11010028
Rothbauer, M., Eilenberger, C., Spitz, S.,
Bachmann, B.E.M., Kratz, S.R.A., Reihs, E.I., Windhager, R., Toegel, S. &
Ertl, P. 2022. Recent advances in additive manufacturing and 3D bioprinting for
organs-on-a-chip and microphysiological systems. Frontiers in Bioengineering
and Biotechnology 2022: 3389. https://doi.org/10.3389/fbioe.2022.837087
Rothbauer, M., Bachmann, B.E.M., Eilenberger, C.,
Kratz, S.R.A., Spitz, S., Höll, G. & Ertl, P. 2021. A decade of
organs-on-a-chip emulating human physiology at the microscale: A critical
status report on progress in toxicology and pharmacology. Micromachines 12(5): 470. https://doi.org/10.3390/mi12050470
Serrano, D.R., Kara, A., Yuste, I., Luciano, F.C., Ongoren,
B., Anaya, B.J., Molina, G., Diez, L., Ramirez, B.I., Ramirez, I.O.,
Sánchez-Guirales, S.A., Fernández-García, R., Bautista, L., Ruiz, H.K. &
Lalatsa, A. 2023. 3D printing technologies
in personalized medicine, nanomedicines, and biopharmaceuticals. Pharmaceutics 15(2): 313. https://doi.org/10.3390/pharmaceutics15020313
Shiwarski, D.J., Hudson, A.R., Tashman, J.W., Bakirci,
E., Moss, S., Coffin, B.D. & Feinberg, A.W. 2024. 3D bioprinting of collagen-based
microfluidics for engineering fully-biologic tissue systems. bioRxiv 2024.01.26.577422. https://doi.org/10.1101/2024.01.26.577422
Skardal, A., Devarasetty, M., Soker, S. &
Hall, A.R. 2015. In situ patterned micro 3D liver constructs for
parallel toxicology testing in a fluidic device. Biofabrication 7(3): 031001. https://doi.org/10.1088/1758-5090/7/3/031001
Sun, J., Yao, K., An, J., Jing,
L., Huang, K. & Huang, D. 2023. Machine
learning and 3D bioprinting. International
Journal of Bioprinting 9(4): 717.
Terrell-Hall, T.B., Ammer, A.G., Griffith, J.I.G.
& Lockman, P.R. 2017. Permeability across a novel microfluidic blood-tumor
barrier model. Fluids and Barriers of the CNS 14: 3. https://doi.org/10.1186/s12987-017-0050-9
Tibbits, S. 2014. 4D Printing: Multi-material
shape change. Architectural Design 84(1) (Special Issue: High
Definition: Zero Tolerance in Design and Production): 116-121.
https://doi.org/https://doi.org/10.1002/ad.1710
Ventura, R.D. 2021. An overview of
laser-assisted bioprinting (LAB) in tissue engineering applications. Medical
Lasers 10(2): 76-81. https://doi.org/10.25289/ml.2021.10.2.76
Vinson, B.T., Sklare, S.C. & Chrisey, D.B. 2017.
Laser-based cell printing techniques for additive biomanufacturing. Current
Opinion in Biomedical Engineering 2: 14-21.
https://doi.org/10.1016/j.cobme.2017.05.005
Wang, D., Gust, M. & Ferrell, N. 2022.
Kidney-on-a-chip: Mechanical stimulation and sensor integration. Sensors 22(18): 6889. https://doi.org/10.3390/s22186889
Wu, C.A., Zhu, Y. & Woo, Y.J. 2023.
Advances in 3D bioprinting: Techniques, applications, and future directions for
cardiac tissue engineering. Bioengineering 10(7): 842.
https://doi.org/10.3390/bioengineering10070842
Wu, T., Gao, Y.Y., Su, J., Tang, X.N., Chen, Q.,
Ma, L.W., Zhang, J.J., Wu, J.M. & Wang, S.X. 2022. Three-dimensional
bioprinting of artificial ovaries by an extrusion-based method using
gelatin-methacryloyl bioink. Climacteric 25(2): 170-178.
https://doi.org/10.1080/13697137.2021.1921726
Wu, Z., Cai, H., Ao, Z.,
Xu, J., Heaps, S. & Guo, F. 2021. Microfluidic printing of tunable hollow
microfibers for vascular tissue engineering. Advanced Materials Technologies 6(8): 2000683. https://doi.org/10.1002/admt.202000683
Yao, Y., Xu, X., Yang, L., Zhu, J., Wan, J., Shen, L., Xia,
F., Fu, G., Deng, Y., Pan, M., Guo, Q., Gao, X., Li, Y., Rao, X., Zhou, Y.,
Liang, L., Wang, Y., Zhang, J., Zhang, H., Li, G., Zhang, L., Peng, J., Cai,
S., Hu, C., Gao, J., Clevers, H., Zhang, Z. & Hua, G. 2020. Patient-derived
organoids predict chemoradiation responses of locally advanced rectal cancer. Cell
Stem Cell 26(1): 17-26.e6. https://doi.org/10.1016/j.stem.2019.10.010
Yi, H.G., Lee, H. & Cho, D.W. 2017. 3D
printing of organs-on-chips. Bioengineering 4(1): 10.
https://doi.org/10.3390/bioengineering4010010
Zaeri, A., Zgeib, R., Cao, K., Zhang, F. &
Chang, R.C. 2022. Numerical analysis on the effects of microfluidic-based
bioprinting parameters on the microfiber geometrical outcomes. Scientific
Reports 12(1): 3364. https://doi.org/10.1038/s41598-022-07392-0
Zandrini, T., Florczak, S., Levato, R. &
Ovsianikov, A. 2023. Breaking the resolution limits of 3D bioprinting: Future
opportunities and present challenges. Trends in Biotechnology 41(5): 604-614.
https://doi.org/10.1016/j.tibtech.2022.10.009
Zhang, J., Chen, F., He, Z., Ma, Y., Uchiyama, K.
& Lin, J-M. 2016. A novel approach for precisely controlled multiple cell
patterning in microfluidic chips by inkjet printing and the detection of drug
metabolism and diffusion. Analyst 141(10): 2940-2947.
https://doi.org/10.1039/C6AN00395H
Zhang, J., Byers, P., Erben, A., Frank, C., Schulte-Spechtel,
L., Heymann, M., Docheva, D., Huber, H.P., Sudhop, S. & Clausen-Schaumann, H.
2021. Single cell bioprinting with ultrashort laser pulses. Advanced
Functional Materials 31(19): 2100066. https://doi.org/10.1002/adfm.202100066
Zhang, X., Yang, Y., Yang, Z., Ma, R., Aimaijiang,
M., Xu, J., Zhang, Y. & Zhou, Y. 2023. Four-dimensional printing and shape
memory materials in bone tissue engineering. International Journal of
Molecular Sciences 24(1): 814. https://doi.org/10.3390/ijms24010814
Zhou, X., Wu, H., Wen, H. & Zheng, B. 2022.
Advances in single-cell printing. Micromachines 13(1): 80.
https://doi.org/10.3390/mi13010080
*Pengarang untuk surat-menyurat; email: yuanzhenyabdp@126.com
|