Sains Malaysiana 54(7)(2025): 1835-1846

http://doi.org/10.17576/jsm-2025-5407-16

 

Integrating Microfluidics and 3D Bioprinting for Advanced in vitro Tissue and Organ Models

(Mengintegrasikan Mikrobendalir dan Pencetakan Bio 3D untuk Tisu in vitro dan Model Organ Termaju)

 

WEI FU1, SHAHARIAR CHOWDHURY2, SIEW XIAN CHIN3 & ZHENYA YUAN4,*

 

1Faculty of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China

2Faculty of Environmental Management, Prince of Songkla University, 90110 Hatyai Songkhla, Thailand

3ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Pathology Department, The First Affiliated Hospital of Hainan Medical University, Haikou, China

 

Diserahkan: 17 April 2025/Diterima: 22 Mei 2025

 

Abstract

Advances in tissue engineering necessitate in vitro models that accurately replicate human organ complexity. The limitations of conventional 2D cultures and animal models have driven development of biomimetic platforms integrating microfluidics and 3D bioprinting. Microfluidic technologies enable precise control of fluid dynamics, nutrient delivery, and biochemical gradients at microscale, while 3D bioprinting facilitates layer-by-layer fabrication of complex tissue structures. This review examines design principles of microfluidic platforms, highlighting organ-on-a-chip and tumor-on-a-chip applications demonstrating controlled perfusion advantages. We analyze major bioprinting modalities, extrusion, inkjet, laser-assisted, and stereolithography, evaluating their suitability for specific tissue engineering applications. The review describes integration strategies, including direct cell bioprinting into microfluidic channels and using microfluidic molds for bioprinted constructs, which enhance vascularization and perfusion. We explore bioink advancements focusing on printability, mechanical properties, and stimulus-responsiveness (4D bioprinting). Finally, we address critical research directions: resolution enhancement, hierarchical vascular network development, AI-driven optimization, and regulatory standardization to facilitate clinical translation. This synthesis of current achievements and future directions aims to guide development of sophisticated in vitro models for disease modeling, drug discovery, and personalized medicine.

Keywords: Biomimetic models; microfluidics; organ-on-a-chip; tissue engineering; 3D bioprinting

 

Abstrak

Kemajuan dalam kejuruteraan tisu memerlukan model in vitro yang mereplikasi kerumitan organ manusia dengan tepat. Keterbatasan kultur 2D konvensional dan model haiwan telah mendorong pembangunan platform biomimetik yang menyepadukan mikrobendalir dan pencetakan bio 3D. Teknologi mikrobendalir membolehkan kawalan tepat ke atas dinamik bendalir, penghantaran nutrien dan kecerunan biokimia pada skala mikro, manakala pencetakan bio 3D memudahkan fabrikasi lapisan demi lapisan bagi struktur tisu kompleks. Penyelidikan ini mengkaji prinsip reka bentuk platform mikrobendalir, menyerlahkan aplikasi organ-on-a-chip dan tumor-on-a-chip yang menunjukkan kelebihan perfusi terkawal. Kami menganalisis modaliti pencetakan bio utama, penyemperitan, pancutan dakwat, bantuan laser dan stereolitografi, menilai kesesuaiannya untuk aplikasi kejuruteraan tisu tertentu. Penyelidikan ini menerangkan strategi penyepaduan, termasuk pencetakan bio sel terus ke dalam saluran mikrobendalir dan menggunakan acuan mikrobendalir untuk binaan biocetak yang meningkatkan vaskularisasi dan perfusi. Kami meneroka kemajuan dakwat bio yang memfokuskan pada kebolehcetakan, sifat mekanikal dan tindak balas rangsangan (percetakan bio 4D). Akhir sekali, kami menangani arah penyelidikan kritikal: peningkatan resolusi, pembangunan rangkaian vaskular hierarki, pengoptimuman dipacu AI dan penyeragaman kawal selia untuk memudahkan terjemahan klinikal. Sintesis pencapaian semasa dan hala tuju masa hadapan ini bertujuan untuk membimbing pembangunan model in vitro yang canggih untuk pemodelan penyakit, penemuan ubat dan perubatan yang diperibadikan.

Kata kunci: Kejuruteraan tisu; mikrobendalir; model biomimetik; organ-on-a-chip; pencetakan bio 3D

 

RUJUKAN

Baptista, L.S., Porrini, C., Kronemberger, G.S., Kelly, D.J. & Perrault, C.M. 2022. 3D Organ-on-A-chip: The convergence of microphysiological systems and organoids. Frontiers in Cell and Developmental Biology 10: 1043117. https://doi.org/10.3389/fcell.2022.1043117

Cao, U.M.N., Zhang, Y., Chen, J., Sayson, D., Pillai, S. & Tran, S.D. 2023. Microfluidic Organ-on-A-chip: A guide to biomaterial choice and fabrication. International Journal of Molecular Sciences 24(4): 3232. https://doi.org/10.3390/ijms24043232

Cardoso, B.D., Castanheira, E.M.S., Lanceros-Méndez, S. & Cardoso, V.F. 2023. Recent advances on cell culture platforms for in vitro drug screening and cell therapies: From conventional to microfluidic strategies. Advanced Healthcare Materials 12(18): e202202936. https://doi.org/10.1002/adhm.202202936

Casanova, C.R., Casanova, M.R., Reis, R.L. & Oliveira, J.M. 2024. Advancing diagnostics and disease modeling: Current concepts in biofabrication of soft microfluidic systems. In Vitro Models 3(2-3): 139-150. https://doi.org/10.1007/s44164-024-00072-5

Chliara, M.A., Elezoglou, S. & Zergioti, I. 2022. Bioprinting on Organ-on-Chip: Development and applications. Biosensors 12(12): 1135. https://doi.org/10.3390/bios12121135

Christou, C.D., Vasileiadou, S., Sotiroudis, G. & Tsoulfas, G. 2023. Three-dimensional printing and bioprinting in renal transplantation and regenerative medicine: Current perspectives. Journal of Clinical Medicine 12(20): 6520. https://doi.org/10.3390/jcm12206520

Corbett, D.C., Olszewski, E. & Stevens, K. 2019. A FRESH take on resolution in 3D bioprinting. Trends in Biotechnology 37(11): 1153-1155. https://doi.org/https://doi.org/10.1016/j.tibtech.2019.09.003

Costantini, M., Testa, S., Mozetic, P., Barbetta, A., Fuoco, C., Fornetti, E., Tamiro, F., Bernardini, S., Jaroszewicz, J., Święszkowski, W., Trombetta, M., Castagnoli, L., Seliktar, D., Garstecki, P., Cesareni, G., Cannata, S., Rainer, A. & Gargioli, C. 2017. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials 131: 98-110. https://doi.org/10.1016/j.biomaterials.2017.03.026

Davoodi, E., Sarikhani, E., Montazerian, H., Ahadian, S., Costantini, M., Swieszkowski, W., Willerth, S., Walus, K., Mofidfar, M., Toyserkani, E., Khademhosseini, A. & Ashammakhi, N. 2020. Extrusion and microfluidic-based bioprinting to fabricate biomimetic tissues and organs. Advanced Materials Technologies5(8): 1901044. https://doi.org/10.1002/admt.201901044

Deosarkar, S.P., Prabhakarpandian, B., Wang, B., Sheffield, J.B., Krynska, B. & Kiani, M.F. 2015. A novel dynamic neonatal blood-brain barrier on a chip. PLoS ONE 10(11): e0142725. https://doi.org/10.1371/journal.pone.0142725

De Spirito, M., Palmieri, V., Perini, G. & Papi, M. 2024. Bridging the gap: Integrating 3D bioprinting and microfluidics for advanced multi-organ models in biomedical research. Bioengineering 11(7): 664. https://doi.org/10.3390/bioengineering11070664

Fang, L., Liu, Y., Qiu, J. & Wan, W. 2022. Bioprinting and its use in tumor-on-a-chip technology for cancer drug screening: A review. International Journal of Bioprinting 8(4): 46-64. https://doi.org/10.18063/ijb.v8i4.603

Fratini, C., Weaver, E., Moroni, S., Irwin, R., Dallal Bashi, Y.H., Uddin, S., Casettari, L., Wylie, M.P. & Lamprou, D.A. 2023. Combining microfluidics and coaxial 3D-bioprinting for the manufacturing of diabetic wound healing dressings. Biomaterials Advances 153: 213557. https://doi.org/10.1016/j.bioadv.2023.213557

Garg, S., Heuck, G., Ip, S. & Ramsay, E. 2016. Microfluidics: A transformational tool for nanomedicine development and production. Journal of Drug Targeting 24(9): 821-835. https://doi.org/10.1080/1061186X.2016.1198354

Gu, B., Han, K., Cao, H., Huang, X., Li, X., Mao, M., Zhu, H., Cai, H., Li, D. & He, J. 2024. Heart-on-a-chip systems with tissue-specific functionalities for physiological, pathological, and pharmacological studies. Materials Today Bio 24: 100914. https://doi.org/https://doi.org/10.1016/j.mtbio.2023.100914

Herland, A., van der Meer, A.D., FitzGerald, E.A., Park, T-E., Sleeboom, J.J.F. & Ingber, D.E. 2016. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLoS ONE 11(3): e0150360. https://doi.org/10.1371/journal.pone.0150360

Hinton, T.J., Jallerat, Q., Palchesko, R.N., Park, J.H., Grodzicki, M.S., Shue, H-J., Ramadan, M.H., Hudson, A.R. & Feinberg, A.W. 2025. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Science Advances 1(9): e1500758. https://doi.org/10.1126/sciadv.1500758

Huang, C., Sanaei, F., Verdurmen, W.P.R., Yang, F., Ji, W. & Walboomers, X.F. 2023. The application of organs-on-a-chip in dental, oral, and craniofacial research. Journal of Dental Research 102(4): 364-375. https://doi.org/10.1177/00220345221145555

Ionov, L. 2018. 4D biofabrication: Materials, methods, and applications. Advanced Healthcare Materials 7(17): 1800412. https://doi.org/https://doi.org/10.1002/adhm.201800412

Jeon, E.Y., Sorrells, L. & Abaci, H.E. 2022. Biomaterials and bioengineering to guide tissue morphogenesis in epithelial organoids. Frontiers in Bioengineering and Biotechnology 10: 1038277. https://doi.org/10.3389/fbioe.2022.1038277

Jia, S., Bu, Y., Lau, D-S.A., Lin, Z., Sun, T., Lu, W.W., Lu, S., Ruan, C. & Chan, C-H.J. 2023. Advances in 3D bioprinting technology for functional corneal reconstruction and regeneration. Frontiers in Bioengineering and Biotechnology 10: 1065460. https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2022.1065460

Kahraman, E., Ribeiro, R., Lamghari, M. & Neto, E. 2022. Cutting-edge technologies for inflamed joints on chip: How close are we? Frontiers in Immunology 13: 802440. https://doi.org/10.3389/fimmu.2022.802440

Kang, H-W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J. & Atala, A. 2016. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology 34(3): 312-319. https://doi.org/10.1038/nbt.3413

Kim, B.S., Lee, J-S., Gao, G. & Cho, D-W. 2017. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 9(2): 025034. https://doi.org/10.1088/1758-5090/aa71c8

Kim, M., Panagiotakopoulou, M., Chen, C., Ruiz, S.B., Ganesh, K., Tammela, T. & Heller, D.A. 2023. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nature Reviews Cancer 23: 581-599. https://doi.org/10.1038/s41568-023-00593-3

Kim, S., Chung, M., Ahn, J., Lee, S. & Jeon, N.L. 2016. Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. Lab Chip 16(21): 4189-4199. https://doi.org/10.1039/C6LC00910G

Kim, Y.B., Lee, H. & Kim, G.H. 2016. Strategy to achieve highly porous/biocompatible macroscale cell blocks, using a collagen/genipin-bioink and an optimal 3D printing process. ACS Applied Materials & Interfaces 8(47): 32230-32240. https://doi.org/10.1021/acsami.6b11669

Kirillova, A. & Ionov, L. 2019. Shape-changing polymers for biomedical applications. Journal of Materials Chemistry B 7(10): 1597-1624. https://doi.org/10.1039/C8TB02579G

Klangprapan, J., Souza, G.R. & Ferreira, J.N. 2024. Bioprinting salivary gland models and their regenerative applications. BDJ Open 10: 39. https://doi.org/10.1038/s41405-024-00219-2

Klotz, B.J., Gawlitta, D., Rosenberg, A.J.W.P., Malda, J. & Melchels, F.P.W. 2016. Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends in Biotechnology 34(5): 394-407. https://doi.org/https://doi.org/10.1016/j.tibtech.2016.01.002

Kolesky, D.B., Homan, K.A., Skylar-Scott, M.A. & Lewis, J.A. 2016. Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences 113(12): 3179-3184. https://doi.org/10.1073/pnas.1521342113

Lam, E.H.Y., Yu, F., Zhu, S. & Wang, Z. 2023. 3D bioprinting for next-generation personalized medicine. International Journal of Molecular Sciences 24(7): 6357. https://doi.org/10.3390/ijms24076357

Li, H., Li, N., Zhang, H., Zhang, Y., Suo, H., Wang, L. & Xu, M. 2020. Three-dimensional bioprinting of perfusable hierarchical microchannels with alginate and silk fibroin double cross-linked network. 3D Printing and Additive Manufacturing 7(2): 78-84. https://doi.org/10.1089/3dp.2019.0115

Lim, K.S., Levato, R., Costa, P.F., Castilho, M.D., Alcala-Orozco, C.R., van Dorenmalen, K.M.A., Melchels, F.P.W., Gawlitta, D., Hooper, G.J., Malda, J. & Woodfield, T.B.F. 2018. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication 10(3): 034101. https://doi.org/10.1088/1758-5090/aac00c

Lin, H., Zhang, D., Alexander, P.G., Yang, G., Tan, J., Cheng, A.W-M. & Tuan, R.S. 2013. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34(2): 331-339. https://doi.org/10.1016/j.biomaterials.2012.09.048

Liu, T., Weng, W., Zhang, Y., Sun, X. & Yang, H. 2020. Applications of gelatin methacryloyl (GelMA) hydrogels in microfluidic technique-assisted tissue engineering. Molecules 25(22): 5305. https://doi.org/10.3390/molecules25225305

Ma, J., Wang, Y. & Liu, J. 2018. Bioprinting of 3D tissues/organs combined with microfluidics. RSC Advances 8(39): 21712-21727. https://doi.org/10.1039/c8ra03022g

Makkar, H., Zhou, Y., Tan, K.S., Lim, C.T. & Sriram, G. 2023. Modeling crevicular fluid flow and host-oral microbiome interactions in a gingival crevice-on-chip. Advanced Healthcare Materials 12(6): 2202376. https://doi.org/https://doi.org/10.1002/adhm.202202376

Marcotulli, M., Tirelli, M.C., Volpi, M., Jaroszewicz, J., Scognamiglio, C., Kasprzycki, P., Karnowski, K., Święszkowski, W., Ruocco, G., Costantini, M., Cidonio, G. & Barbetta, A. 2023. Microfluidic 3D printing of emulsion ink for engineering porous functionally graded materials. Advanced Materials Technologies 8(5): 2201244. https://doi.org/https://doi.org/10.1002/admt.202201244

McDonald, J.C. & Whitesides, G.M. 2002. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research 35(7): 491-499. https://doi.org/10.1021/ar010110q

Melchels, F.P.W., Feijen, J. & Grijpma, D.W. 2010. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24): 6121-6130. https://doi.org/https://doi.org/10.1016/j.biomaterials.2010.04.050

Miao, S., Castro, N., Nowicki, M., Xia, L., Cui, H., Zhou, X., Zhu, W., Lee, S-J., Sarkar, K., Vozzi, G., Tabata, Y., Fisher, J. & Zhang, L.G. 2017. 4D printing of polymeric materials for tissue and organ regeneration. Materials Today 20(10): 577-591. https://doi.org/https://doi.org/10.1016/j.mattod.2017.06.005

Michas, C., Karakan, M.Ç., Nautiyal, P., Seidman, J.G., Seidman, C.E., Agarwal, A., Ekinci, K., Eyckmans, J., White, A.E. & Chen, C.S. 2025. Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances 8(16): eabm3791. https://doi.org/10.1126/sciadv.abm3791

Miri, A.K., Mostafavi, E., Khorsandi, D., Hu, S-K., Malpica, M. & Khademhosseini, A. 2019. Bioprinters for organs-on-chips. Biofabrication 11(4): 042002. https://doi.org/10.1088/1758-5090/ab2798

Moetazedian, A., Candeo, A., Liu, S., Hughes, A., Nasrollahi, V., Saadat, M., Bassi, A., Grover, L.M., Cox, L.R. & Poologasundarampillai, G. 2023. Versatile microfluidics for biofabrication platforms enabled by an agile and inexpensive fabrication pipeline. Advanced Healthcare Materials 12(26): 2300636. https://doi.org/10.1002/adhm.202300636

Moghimi, N., Ali Hosseini, S., Dalan, A.B., Mohammadrezaei, D., Goldman, A. & Kohandel, M. 2023. Controlled tumor heterogeneity in a co-culture system by 3D bio-printed tumor-on-chip model. Scientific Reports 13: 13648. https://doi.org/10.1038/s41598-023-40680-x

Monzón, M.D., Ortega, Z., Martínez, A. & Ortega, F. 2015. Standardization in additive manufacturing: Activities carried out by international organizations and projects. The International Journal of Advanced Manufacturing Technology 76(5): 1111-1121. https://doi.org/10.1007/s00170-014-6334-1

Muniraj, G., Tan, R.H.S., Dai, Y., Wu, R., Alberti, M. & Sriram, G. 2023. Microphysiological modeling of gingival tissues and host-material interactions using gingiva-on-chip. Advanced Healthcare Materials 12(32): 2301472. https://doi.org/10.1002/adhm.202301472

Murphy, S.V. & Atala, A. 2014. 3D bioprinting of tissues and organs. Nature Biotechnology 32(8): 773-785. https://doi.org/10.1038/nbt.2958

Ozbolat, I.T. & Hospodiuk, M. 2016. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76: 321-343. https://doi.org/10.1016/j.biomaterials.2015.10.076

Park, T.E., Mustafaoglu, N., Herland, A., Hasselkus, R., Mannix, R., FitzGerald, E.A., Prantil-Baun, R., Watters, A., Henry, O., Benz, M., Sanchez, H., McCrea, H.J., Goumnerova, L.C., Song, H.W., Palecek, S.P., Shusta, E. & Ingber, D.E. 2019. Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nature Communications 10(1): 2621. https://doi.org/10.1038/s41467-019-10588-0

Peired, A.J., Mazzinghi, B., De Chiara, L., Guzzi, F., Lasagni, L., Romagnani, P. & Lazzeri, E. 2020. Bioengineering strategies for nephrologists: Kidney was not built in a day. Expert Opinion on Biological Therapy 20(5): 467-480. https://doi.org/10.1080/14712598.2020.1709439

Petrosyan, A., Cravedi, P., Villani, V., Angeletti, A., Manrique, J., Renieri, A., De Filippo, R.E., Perin, L. & Da Sacco, S. 2019. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nature Communications 10(1): 3656. https://doi.org/10.1038/s41467-019-11577-z

Pi, Q., Maharjan, S., Yan, X., Liu, X., Singh, B., van Genderen, A.M., Robledo-Padilla, F., Parra-Saldivar, R., Hu, N., Jia, W., Xu, C., Kang, J., Hassan, S., Cheng, H., Hou, X., Khademhosseini, A. & Zhang, Y.S. 2018. Digitally tunable microfluidic bioprinting of multilayered cannular tissues. Advanced Materials 30(43): 1706913. https://doi.org/10.1002/adma.201706913

Rose, S.C., Larsen, M., Xie, Y. & Sharfstein, S.T. 2024. Salivary gland bioengineering. Bioengineering (Basel) 11(1): 28. https://doi.org/10.3390/bioengineering11010028

Rothbauer, M., Eilenberger, C., Spitz, S., Bachmann, B.E.M., Kratz, S.R.A., Reihs, E.I., Windhager, R., Toegel, S. & Ertl, P. 2022. Recent advances in additive manufacturing and 3D bioprinting for organs-on-a-chip and microphysiological systems. Frontiers in Bioengineering and Biotechnology 2022: 3389. https://doi.org/10.3389/fbioe.2022.837087

Rothbauer, M., Bachmann, B.E.M., Eilenberger, C., Kratz, S.R.A., Spitz, S., Höll, G. & Ertl, P. 2021. A decade of organs-on-a-chip emulating human physiology at the microscale: A critical status report on progress in toxicology and pharmacology. Micromachines 12(5): 470. https://doi.org/10.3390/mi12050470

Serrano, D.R., Kara, A., Yuste, I., Luciano, F.C., Ongoren, B., Anaya, B.J., Molina, G., Diez, L., Ramirez, B.I., Ramirez, I.O., Sánchez-Guirales, S.A., Fernández-García, R., Bautista, L., Ruiz, H.K. & Lalatsa, A. 2023. 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals. Pharmaceutics 15(2): 313. https://doi.org/10.3390/pharmaceutics15020313

Shiwarski, D.J., Hudson, A.R., Tashman, J.W., Bakirci, E., Moss, S., Coffin, B.D. & Feinberg, A.W. 2024. 3D bioprinting of collagen-based microfluidics for engineering fully-biologic tissue systems. bioRxiv 2024.01.26.577422. https://doi.org/10.1101/2024.01.26.577422

Skardal, A., Devarasetty, M., Soker, S. & Hall, A.R. 2015. In situ patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device. Biofabrication 7(3): 031001. https://doi.org/10.1088/1758-5090/7/3/031001

Sun, J., Yao, K., An, J., Jing, L., Huang, K. & Huang, D. 2023. Machine learning and 3D bioprinting. International Journal of Bioprinting 9(4): 717.

Terrell-Hall, T.B., Ammer, A.G., Griffith, J.I.G. & Lockman, P.R. 2017. Permeability across a novel microfluidic blood-tumor barrier model. Fluids and Barriers of the CNS 14: 3. https://doi.org/10.1186/s12987-017-0050-9

Tibbits, S. 2014. 4D Printing: Multi-material shape change. Architectural Design 84(1) (Special Issue: High Definition: Zero Tolerance in Design and Production): 116-121. https://doi.org/https://doi.org/10.1002/ad.1710

Ventura, R.D. 2021. An overview of laser-assisted bioprinting (LAB) in tissue engineering applications. Medical Lasers 10(2): 76-81. https://doi.org/10.25289/ml.2021.10.2.76

Vinson, B.T., Sklare, S.C. & Chrisey, D.B. 2017. Laser-based cell printing techniques for additive biomanufacturing. Current Opinion in Biomedical Engineering 2: 14-21. https://doi.org/10.1016/j.cobme.2017.05.005

Wang, D., Gust, M. & Ferrell, N. 2022. Kidney-on-a-chip: Mechanical stimulation and sensor integration. Sensors 22(18): 6889. https://doi.org/10.3390/s22186889

Wu, C.A., Zhu, Y. & Woo, Y.J. 2023. Advances in 3D bioprinting: Techniques, applications, and future directions for cardiac tissue engineering. Bioengineering 10(7): 842. https://doi.org/10.3390/bioengineering10070842

Wu, T., Gao, Y.Y., Su, J., Tang, X.N., Chen, Q., Ma, L.W., Zhang, J.J., Wu, J.M. & Wang, S.X. 2022. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Climacteric 25(2): 170-178. https://doi.org/10.1080/13697137.2021.1921726

Wu, Z., Cai, H., Ao, Z., Xu, J., Heaps, S. & Guo, F. 2021. Microfluidic printing of tunable hollow microfibers for vascular tissue engineering. Advanced Materials Technologies 6(8): 2000683. https://doi.org/10.1002/admt.202000683

Yao, Y., Xu, X., Yang, L., Zhu, J., Wan, J., Shen, L., Xia, F., Fu, G., Deng, Y., Pan, M., Guo, Q., Gao, X., Li, Y., Rao, X., Zhou, Y., Liang, L., Wang, Y., Zhang, J., Zhang, H., Li, G., Zhang, L., Peng, J., Cai, S., Hu, C., Gao, J., Clevers, H., Zhang, Z. & Hua, G. 2020. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26(1): 17-26.e6. https://doi.org/10.1016/j.stem.2019.10.010

Yi, H.G., Lee, H. & Cho, D.W. 2017. 3D printing of organs-on-chips. Bioengineering 4(1): 10. https://doi.org/10.3390/bioengineering4010010

Zaeri, A., Zgeib, R., Cao, K., Zhang, F. & Chang, R.C. 2022. Numerical analysis on the effects of microfluidic-based bioprinting parameters on the microfiber geometrical outcomes. Scientific Reports 12(1): 3364. https://doi.org/10.1038/s41598-022-07392-0

Zandrini, T., Florczak, S., Levato, R. & Ovsianikov, A. 2023. Breaking the resolution limits of 3D bioprinting: Future opportunities and present challenges. Trends in Biotechnology 41(5): 604-614. https://doi.org/10.1016/j.tibtech.2022.10.009

Zhang, J., Chen, F., He, Z., Ma, Y., Uchiyama, K. & Lin, J-M. 2016. A novel approach for precisely controlled multiple cell patterning in microfluidic chips by inkjet printing and the detection of drug metabolism and diffusion. Analyst 141(10): 2940-2947. https://doi.org/10.1039/C6AN00395H

Zhang, J., Byers, P., Erben, A., Frank, C., Schulte-Spechtel, L., Heymann, M., Docheva, D., Huber, H.P., Sudhop, S. & Clausen-Schaumann, H. 2021. Single cell bioprinting with ultrashort laser pulses. Advanced Functional Materials 31(19): 2100066. https://doi.org/10.1002/adfm.202100066

Zhang, X., Yang, Y., Yang, Z., Ma, R., Aimaijiang, M., Xu, J., Zhang, Y. & Zhou, Y. 2023. Four-dimensional printing and shape memory materials in bone tissue engineering. International Journal of Molecular Sciences 24(1): 814. https://doi.org/10.3390/ijms24010814

Zhou, X., Wu, H., Wen, H. & Zheng, B. 2022. Advances in single-cell printing. Micromachines 13(1): 80. https://doi.org/10.3390/mi13010080

 

*Pengarang untuk surat-menyurat; email: yuanzhenyabdp@126.com

 

 

 

 

 

 

 

           

sebelumnya